Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

http://www.mshah.io

Making your Program Performance Fly!
The Flyweight Design Pattern

with Mike Shah

Social: @MichaelShah

Web: mshah.io
19:00 - 20:00 CES (1pm ET) Tue. March 19, Courses: courses.mshah.io
2024 @ YouTube

Introductory Audience http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

| do consulting and technical training on modern C++,

DLang, Concurrency, and Graphics Programming

o Usually graphics or games related -- e.g. Building 3D application
plugins

Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

Web
www.mshah.io

@ YouTube

https://www.youtube.com/c/MikeShah

Non-Academic Courses
courses.mshah.io
Conference Talks

http://tinyurl.com/mike-talks

3

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

e Located here: hittps://github.com/MikeShah/Talks/tree/main/2024/mucpp

O MikeShah |/ Talks

Code Issues Pull requests

4: MikeShah

https://github.com/MikeShah/Talks/tree/main/2024/mucpp

M The abstract that you read and enticed
Abstract you to join me is here!

The flyweight design pattern is a fundamental structural design pattern that allows
objects to reuse or ‘cache’ shared pieces of data. One might go as far to say that the
flyweight design pattern is an obvious pattern when you learn it, but I'll share in my
experience where it often only becomes obvious after building a system. In this talk I'll
introduce the flyweight, and talk about how it is used frequently in domains like
computer graphics, but also useful anywhere an object is built of individual
components. We'll then discuss how to instantiate objects using the flyweight, compare
flyweight objects, and the trade-offs of this pattern versus other related patterns (e.g.
component systems). Attendees will leave this talk understanding how to implement the
flyweight pattern and understand the trade-offs with this fundamental structural design
pattern. This talk will be accessible to beginners and have Modern C++ code available.

Design Patterns

In software engineering, a software design pattern is a general, reusable solution to a commonly occurring problem within a given
context in software design. It is not a finished design that can be transformed directly into source or machine code. Rather, itis a
description or template for how to solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or system.

Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final
application classes or objects that are involved. Patterns that imply mutable state may be unsuited for functional programming
languages. Some patterns can be rendered unnecessary in languages that have built-in support for solving the problem they are trying
to solve, and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate between the levels of a programming
paradigm and a concrete algorithm.

https://en.wikipedia.org/wiki/Software_design_pattern

https://en.wikipedia.org/wiki/Software_design_pattern

Design Patterns (1/4)

e Today we are going to be talking

about a ‘design pattern’
o Design patterns are ‘templates’ for solving
a variety of common problems related to:
m Creating objects and/or data
m How we structure our code
m Our how code behaves

BB

Allows objects with incompatible interfaces to

collaborate.

Decorator

Lets you attach new behaviors to objects by placing
these objects inside special wrapper objects that
contain the behaviors.

DC;> D Proxy

Lets you provide a substitute or placeholder for
another object. A proxy controls access to the
original object, allowing you to perform something
either before or after the request gets through to
the original object.

[@ﬂ Bridge

Lets you split a large class or a set of closely related
classes into two separate hierarchies—abstraction
and implementation—which can be developed
independently of each other.

Facade

Provides a simplified interface to a library, a
framework, or any other complex set of classes.

§ ?,; Composite

Lets you compose objects into tree structures and
then work with these structures as if they were

individual objects.

D{ Flyweight

Lets you fit more objects into the available amount
of RAM by sharing common parts of state between
multiple objects instead of keeping all of the data in

each object.

https://refactoring.guru/design-patterns/structural-patterns

https://refactoring.guru/design-patterns/structural-patterns

e Today we are going to be talking

about a ‘design pattern’

o Design patterns are ‘templates’ for solving
a variety of common problems related to:

A popular o
taxonomy

(i.e. °
organization
) of design o
patterns is in
three
categories.

Creational Design Patterns

Structural Design Patterns

Behavioral Design Patterns

b

Allows objects with incompatible interfaces to
collaborate.

Decorator

Lets you attach new behaviors to objects by placing
these objects inside special wrapper objects that
contain the behaviors.

DE> D Proxy

Lets you provide a substitute or placeholder for
another object. A proxy controls access to the
original object, allowing you to perform something
either before or after the request gets through to
the original object.

u@ Bridge

Lets you split a large class o a set of closely related
classes into two separate hierarchies—abstraction
and implementation—which can be developed
independently of each other.

Facade

Provides a simplified interface to a library, a
framework, or any other complex set of classes.

§ ?,; Composite

Lets you compose objects into tree structures and
then work with these structures as if they were
individual objects.

Flyweight

Lets you fit more objects into the available amount
of RAM by sharing common parts of state between
multiple objects instead of keeping all of the data in
each object.

https://refactoring.guru/design-patterns/structural-patterns

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

b2

Design Patterns

Elements of Reusable
Object-Oriented.Sof

Erich Gamma
Richard Helm

This book
gets most
of the
credit for
creating
these three
categories

Creational Desig

>
o
e
&
4
4
Z
=
<
'_{_‘.
~<
=
=
O
w
w
=~
>
7
>
~
~
-
<
s
)
~
—
Z
™

e Structural Desiar

SIS

e Behavioral Desig

prns/structural-patterns

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

| highly recommend
‘Klaus’s’ book
before/after/during looking
at the Gang of Four book

He is perhaps humble --
but there are excellent
samples and applied
examples with Modern
C++ code

ctural Design

shavioral Design

OREILLY"

C++ Software
De&gn

Design Principles
and Patterns for
High-Quality Software

Klaus Iglberger

structural-patterns

10

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://refactoring.guru/design-patterns/structural-patterns

Recap - What is a Design Pattern (1/5)

11

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

occurring problem

software design pattern is a general, reusable solution to a commonly

12

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

software design pattern is a general, reusable solution to a commonly
occurring problem

formalized best
practices that the programmer can use to solve common problems

13

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

software design pattern is a general, reusable solution to a commonly
occurring problem

formalized best
practices that the programmer can use to solve common problems

Object-oriented design patterns typically show relationships and interactions between classes or
objects

14

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

software design pattern is a general, reusable solution to a commonly
occurring problem

formalized best
practices that the programmer can use to solve common problems

Object-oriented design patterns typically show relationships and interactions between classes or
objects

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

15

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

(Aside) Full wikipedia page -- quite a good summary! (1/3)

In software engineering, a software design pattern is a general, reusable solution to a commonly
occurring problem within a given context in software design. It is not a finished design that can be
transformed directly into source or machine code. Rather, it is a description or template for how to
solve a problem that can be used in many different situations. Design patterns are formalized best
practices that the programmer can use to solve common problems when designing an application or
system.

Object-oriented design patterns typically show relationships and interactions between classes or
objects, without specifying the final application classes or objects that are involved. Patterns that imply
mutable state may be unsuited for functional programming languages. Some patterns can be rendered
unnecessary in languages that have built-in support for solving the problem they are trying to solve,
and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate
between the levels of a programming paradigm and a concrete algorithm.

16

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

So the point of studying software design (specifically
design patterns) should be to help us:

1.) Ultilize a prior solution that can be shaped to help
solve current problems

(Note: Perhaps as a language designer, you might also consider studying patterns to see
what could be incorporated into the language!)

17

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

Let’s take a look at a problem to better understand where
a pattern may be useful!

18

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Algorithm

A Problem Domain

Game Programming

19

Game Complexity

Games these days are becoming
increasingly more beautiful and
more complex.

(@)

The beauty in modern games is
increasing in photorealism (or otherwise
appealing non-photorealistic styles) due
to the improvements in our hardware.

m We have the ability to render

“more” at higher resolutions

The complexity I've observed is from
improvements in infrastructure -- i.e. the
toolset (e.g. Unreal Engine) has
improved our ability to focus on building
data-driven games.

https://www.kotaku.com.au/wp-content/uploads/2020/08/19/kpss550yj635psxarrnm.qgif?quality=75

20

https://www.kotaku.com.au/wp-content/uploads/2020/08/19/kpss55oyj635psxgrrnm.gif?quality=75

Game Organization (“structure”)

e Programming games, and thinking
about how to model virtual worlds is

an interesting exercise.
o An ‘object-oriented’ approach is often
intuitive as it matches what we see on
the screen.

Observe the individual
‘objects’ in the image to the

rl g h t . https://i.ytimg.com/vi/wjrCvZOKyp8/maxresdefault.jpg

21

https://i.ytimg.com/vi/wjrCvZOKyp8/maxresdefault.jpg

Game Organization (1/3)

P

P

e Let's play a little game here
[

Hero of the West

o What ‘attributes’ do you see of this ol N =" PN\ Coran oo
character? ‘ B i
m (i.e. what would the ‘member
variables’ be if you created a

‘struct’ for this hero?)

v
DEFAULT
.

H
RAN MIZ
\ = ! ¢
NEXT

TAKE
PICTURE §
2

https://www.gamespot.com/a/uploads/original/gamespot/imaqes/2006/024/reviews/709371-929245_20060125_001.

22

https://www.gamespot.com/a/uploads/original/gamespot/images/2006/024/reviews/709371-929245_20060125_001.jpg

| think something like the following
would be reasonable.

1 // gameobject.cpp
2 struct GameObject{

std::string name;

Mesh L
Texture t /]
Position P/
Transform t; //

Behavior b: [/
//

GameObject(){ }
~GameObject() { }

3D data
texture
Position
rotation

Function ptr
to some action

23

This may be a perfectly reasonable

implementation.

o ‘GameObject serves as the ‘generic’ object
that holds various attributes to create
objects.

m e.g. A ‘GameObject’ with a mesh,
texture, position, and transform is a
3D character like pictured above.

m e.g. A‘GameObject’ with a ‘“Texture’
and ‘Position’ may be a ‘dialogue’
box’

There exist plenty of games which
follow this design to build the virtual

world

1 // gameobject.cpp
2 struct GameObject{

std::string name;

Mesh L
Texture t /]
Position P/
Transform t; //

Behavior b: [/
//

GameObject(){ }
~GameObject() { }

3D data
texture
Position
rotation

Function ptr
to some action

24

A Problem Domain

Scale in Game Programming

The Horde3D engine was used in several of these
images for today’s talk

https://en.wikipedia.org/wiki/Horde3D

https://qithub.com/horde3d/Horde3D

http://www.horde3d.org/

25

https://en.wikipedia.org/wiki/Horde3D
https://github.com/horde3d/Horde3D
http://www.horde3d.org/

Managing Scale (1/8)

e As mentioned, games are growing

in their beauty and their complexity
o Let's take this example here with many
‘GameObjects’ (the 3D characters
pictured)

http://horde3d.org/screenshots/chicago.jpg

26

http://horde3d.org/screenshots/chicago.jpg

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?

GameObjectx objects = new GameObject[5001];

How many objects are instantiated

here?
o Let’s say we could have 500
o Consider those 500 objects may be the
same or different
m All those objects also carry

variations of geometry, texture,
mesh, names, etc. (as discussed
in previous activity)

http://horde3d.org/screenshots/chicago.jpg

27

http://horde3d.org/screenshots/chicago.jpg

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

NDNDN
N PO

N DNDN
W

(6]

// Allocate on the heap?
GameObject* objects = new GameObject[

Keep in mind ‘500’ is even a
relatively low number.

Consider each ‘blade of grass’ in
this graphics demo -- where there
could be thousands of objects for a
relatively simple primitive.

https://www.gamedev.net/blogs/entry/2276570-ope
ngl-grass-on-a-windy-day-video/ 28

https://www.gamedev.net/blogs/entry/2276570-opengl-grass-on-a-windy-day-video/
https://www.gamedev.net/blogs/entry/2276570-opengl-grass-on-a-windy-day-video/

(More neat examples)
https://www.youtube.com/watc
h?v=Ibe1JBFS5i5Y

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?
GameObject* objects = new GameObject[

29

https://www.youtube.com/watch?v=Ibe1JBF5i5Y
https://www.youtube.com/watch?v=Ibe1JBF5i5Y

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?
GameObjectx objects = new GameObject[500];

e So what is the challenge here?
o 1. We potentially have many copies of
the same data (on CPU and/or GPU)
o 2. We may want ‘unique’ attributes
per object
m i.e. [t would look weird in the
simulation if all characters walked
in sync
m i.e. It would look weird if all of the
grass was oriented in the same
away and every blade of grass
was the same size.

30

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?

GameObjectx objects = new GameObject[5001];

Question to the audience:
What are our programming tools to deal with these
challenges?

31

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?

GameObject* objects = new GameObject[5001];

Question to the audience:
What are our programming tools to deal with these
challenges?

Possible answers: A mechanism for sharing (e.g.

pointers, a database, component system)

32

// Stack may be too small or valuable
// to allocate our objects on
// GameObject[500] objects;

// Allocate on the heap?

GameObjectx objects = new GameObject[5001;

To help solve this issue, we have a specific pattern to
help us - The Flyweight pattern

(and we can think about the specifics from your previous answer)

33

FLYWEIGHT Object Structural

Intent

Use sharing to support large numbers of fine-grained objects efficiently.

Flyweight Design Pattern

34

https://en.wikipedia.org/wiki/Software

(Aside) Flyweight

FLYWEIGHT Object Structural

Intent

Understanding the word ‘flyweight’
escapes (even as an English

speaker).

o It has some origin in the sport of boxing
to mean ‘lightweight’

o Astack overflow response speculates
the term means something related to a
‘flywheel’ -- which has something to do
with efficiency

So perhaps it’s best to just use the
definition given, and to understand
‘Flyweight’ is a structural design
pattern

Use sharing to support large numbers of fine-grained objects efficiently.

Professional boxing

Before 1909, anyone below featherweight was considered a
bantamweight, regardless of how small the boxer. In 1911, the
organization that eventually became the British Boxing Board of Control
held a match that crowned Sid Smith as the first flyweight champion of
the world.

. Wikipedia
https://en.wikipedia.org > wiki > Flyweight 3

Flyweight - Wikipedia

Flywheel :

IA flywheel is a mechanical device which uses the
Iconservation of angular momentum to store rotational
energy; a form of kinetic energy proportional to the product

pf its moment of inertia and the square of its rotational 35
lspeed. Wikipedia

https://stackoverflow.com/questions/4380658/what-is-the-reason-for-the-name-of-the-flyweight-design-pattern

Flyweight pattern (a structural design pattern) (1/2)

e “Aflyweight is a shared object that can be used in multiple contexts
simultaneously “ (GOF book)
e \We use the flyweight pattern to help us with solving our particular problem:
o When we have a large number of objects sharing a common properties
m Thus we want to save memory (i.e. space)
e And as a side-effect, often also improve performance.

https://en.wikipedia.ora/wiki/Flyweight pattern

36

https://en.wikipedia.org/wiki/Flyweight_pattern

(a structural design pattern) (2/2)

It will be good to understand exactly what a
‘structural’ design pattern is.

https://en.wikipedia.ora/wiki/Flyweight pattern

37

https://en.wikipedia.org/wiki/Flyweight_pattern

Structural Design Pattern

e In short, structural patterns are
about ‘code organization’

o Two primary mechanisms in C++ are:

m Inheritance
m Composition

e ['ll shortly show an example of
using composition for our
‘Flyweight’

Structural patterns are concerned with how classes and objects are composed to form
larger structures. Structural class patterns use inheritance to compose interfaces or im-
plementations. As a simple example, consider how multiple inheritance mixes two or
more classes into one. The result is a class that combines the properties of its parent
classes. This pattern is particularly useful for making independently developed class
libraries work together. Another example is the class form of the Adapter (139) pat-
tern. In general, an adapter makes one interface (the adaptee’s) conform to another,
thereby providing a uniform abstraction of different interfaces. A class adapter accom-
plishes this by inheriting privately from an adaptee class. The adapter then expresses
its interface in terms of the adaptee’s.

Rather than composing interfaces or implementations, structural object patterns de-
scribe ways to compose objects to realize new functionality. The added flexibility of
object composition comes from the ability to change the composition at run-time, which
is impossible with static class composition.

P. 137 of Gang of Four Book

38

Example Flyweight in C++

Goal (1/2) B

o)

MesH .r’léél-l .M&H ! MESH

BARK .Bmkl .BARK) Bm&.

(LAVES ‘Lél-\v

AR AMS PARAMS

;fsmci ;ggmoi ;bSIT ON PosITIoN

: to this
Our Goal: v
o To create a flyweight’ that can be shared
amongst multiple objects /é %

tFins PARANS PARAMS
POSITION PASIT\EN

/

f—J

MoDEL

https://gameprogrammingpatterns.com/flyweight.html

40

https://gameprogrammingpatterns.com/flyweight.html

A A

MESH MESH MESH

BARK BARK \ BARK BARK .

HiHIE

mece | (wee) (RER) [P
hi
e Our Goal: th'sj
o To create a flyweight’ that can be shared
amongst multiple objects /é ﬁ

PARARNS PARANS

l A MS‘
Eo‘:mcn POSITION PASITIEN

MmoDEL LEAVES Il

‘Model’ in this case is the i
flyweight’ (i.e. shared)
object

https://gameprogrammingpatterns.com/flyweight.html

https://gameprogrammingpatterns.com/flyweight.html

Flyweight Terms (1/2)

A

&

2

In the picture:
e The ‘intrinsic’ state to the
flyweight is the ‘model’

o This could often be ‘const’ data
members for instance.

o It's data that is not changing, thus
benefits from being shared

e The ‘extrinsic’ state (unique to
each tree) is the position and

other params.
o Extrinsic state can be part of the
object or shared

PARAMS
PARANS PARAMS PARANS
PO&SITION PasITION POSITION PASITIEN
MODEL MESH \ BARK LEAVES \

Extrinsic

&

&

2

[PARAMS
AR AN S PARAMS PARAA
Fg v‘:osmb-o P&SITION POSITION PASITIEN
mobDeL | MESH \ BARK LEAVES \
Intrinsic

43

Flyweight Example (1/2)

e The following is an example of a ‘flyweight’ pattern.
o We have now split our GameObiject into two categories:
m Extrinsic (‘often’ unique per invocation data)
m Intrinsic (‘shared data’)
o The goal here again is to identify with this pattern where we
might be able to ‘share’ data and avoid duplication.

- GameObject({

Params params;
Position p;

-~ Model* m;

- Model{
Mesh m;
Bark b;
Leaves 1;

- GameObject

Params params;
Position p;

e In my mind -- this is why this is a ‘structural’
design pattern -- which is concerned with how
our objects are created.

o (Infact -- this is sort of an ‘anti-creational’ 14 struct Model{
pattern in which we’re trying to not create 15 Mesh m;
objects) 1€ Bark b;

o We use composition in our structure. 17 Leaves 1;

Flyweight Example 2

e Pictured to the right, is a sample
where the flyweight (Model) holds

some ‘const’ state.
o The ‘extrinsic’ portion of the data is
then passed in through a function.
This may help make more sense now
why it is the ‘extrinsic’ (i.e. external,
meant for the ‘unique’ data) state.

MODEL | MESH LEAVES

t ExtrinsicState{

Params params;
Position p;

£ Model{

£ Mesh m;
;t Bark b;
st Leaves 1;

id DrawOperation(ExtrinsicState

Flyweight UML Diagram

e Observe the { Flyweight
flyweight UML Operation(extrinsicState)
diagram on the
right
o As demonstrated,
we can divide our
objects into K
intrinsic and A
extrinsic pieces
o However, ConcreteFlyweight UnsharedConcreteFlywelight
managing those Operation(extrinsicState) Operation(extrinsicState)
pieces could intrinsicState allState

become tricky

Flyweight UML Diagram

The fix is to have
some sort of
‘factory’ to
otherwise do this.
Note: A factory in
this case could be
some sort of
‘resource
manager’ with a
map for our
flyweights.

FiyweightFactory |0y Veights o Flyweight
GetFlyweight(key) @ Operation(extrinsicState)
3 3
if (flyweight{key] exists) { W
return existing flyweight;
} else {
create new flyweight;
add it to poo! of flyweights;
return the new flyweight;
A
—a| ConcreteFlyweight —ua UnsharedConcreteFlyweight
Operation(extrinsicState) Operation(extrinsicState)
intrinsicState aliState
Client

48

Flyweight Factory

e Typically another way to think of
the flyweight, is as a ‘resource

manager’

o i.e. We lookup objects that could be
shared by some GUID (globally
unique identifier), and then return
that object

m This could otherwise happen
during the creation of our ‘tree’,
‘blade of grass’, etc.

t FlyWeightModelFactory{

Model* GetFlyweight(std::string key){
std::map<std::string,Model*>::iterator itr;

if((itr=mFlyWeightMap.find(key)) != mFlyWeightMap.end()){
=turn itr->second;
Jelse{

Model* m = new Model;
mFlyWeightMap[key]=m;

m;
}
}

std::map<std::string,Model*> mFlyWeightMap;

49

More Discussion on Sharing

] Note t FlyWeightModelFactory{
i 51 Model* GetFlyweight(std::string key){
© We may consider other means Of 5 std::map<std::string,Model*>::iterator itr;
Sharlng 3 if((itr=mFlyWeightMap.find(key)) != mFlyWeightMap.end()){
m e.g. std::shared_ptr and 2 g itr->second;
..) Model* m = new Model;
Std..Weak_ptr S 1 mFlyWeightMap[key]=m;
e Handle System 2 S

std::map<std::string,Model*> mFlyWeightMap;

50

Flyweight Pattern in the
Wild

51

Instancing in Computer Graphics

e Any time you are repeatedly using
the same data, but perhaps with
some variation -- that is a candidate
for ‘flyweight’ pattern.

o The case to the right is relatively
obvious
m datais the same cube
e (Geometry and colors are
the same)
m Position and scale are the only
attributes changing

https://learnopengl.com/Advanced-OpenGL/Instancing

52

https://learnopengl.com/Advanced-OpenGL/Instancing

Instancing in Computer Graphics

e Here's a similar example with

asteroids
o The orientation, scale, and positions are
what’s changing.
o Geometry and texture however remain
the same for each little piece.

https://learnopengl.com/Advanced-OpenGL/Instancing

53

https://learnopengl.com/Advanced-OpenGL/Instancing

Text Rendering

e Text editing is an example used in the

original Gang of Four Book

o Each character is rendered the same way, but in
different positions.

column

[X X) row row row o000
K s -~ / N N \ £ / s
oo Y VYA RO /(1)) eoe
<‘/ \» / \;,,_/ \«,,_./; N o) - NG 4
d g XXk 1) m

o q uviwix z
N———— 1
N flyweight pool

Flyweights model concepts or entities that are normally too plentiful to represent
with objects. For example, a document editor can create a flyweight for each letter
of the alphabet. Each flyweight stores a character code, but its coordinate position
in the document and its typographic style can be determined from the text layout
algorithms and formatting commands in effect wherever the character appears.
The character code is intrinsic state, while the other information is extrinsic.

Logically there is an object for every occurrence of a given character in the docu-
ment:

Physically, however, there is one shared flyweight object per character, and it
appears in different contexts in the document structure. Each occurrence of a par-
ticular character object refers to the same instance in the shared pool of flyweight
objects:

Related Patterns

Component System

55

Component Pattern

t GameObjectff
e A complementary design pattern is a d Upcate ()]
‘component pattern’ ot L Wi
o Inthis system, you add attributes (as
components) to an object. S o
o These ‘components’ could themselves be void AddComponent(T* c){
flyweights, so as to again reduce the ‘weight’ of } mComponents[c->GetType()] =c;

each individual GameObject.

temg te<typename T>
T GetComponent(ComponentType type){
found = mComponents.find(type);

(found != mComponents.end()){
<T>(found->second);

std: :map<ComponentType, Component*> mComponents;
56

nt main(){

GameObject* obj1= GameObject();
GameObject* obj2= GameObject();
Component Example GameObject* obj3= GameObject();
GameObject* obj4= GameObject();
i TextureComponent* = TextureComponent;
. In the Component example on the rlght TextureComponent* = TextureComponent;
: TextureComponent* = TextureComponent;
o What we rea”y Want from ||neS 14-1 7 TextureComponent* = TextureComponent;

is to have some ‘GetFlyweight’ to
determine if the TextureComponents

. obj1->AddComponent(tex1);
are unique or shared. obj2->AddComponent (tex2);
o Again, we can also have some granularity abj2-mhdclomponent(texd);

) obj4->AddComponent(tex4);
as to if the components are shareable or not

as well. std: :vector<GameObject*> objects;
objects.push_back(obj1);
objects.push_back(obj2);
objects.push_back(obj3);
objects.push_back(obj4);

(auto& o: objects){
o->Update();

Related Patterns

Component System

58

* : *
ApprOXImate int GenerateVertexBufferObject(int* handle,void* data){

A A
current = globalContext.currentFreeHandle;
*handle = current;

Model (1/9)

globalContext.VBO[current].handle current;
globalContext.VBO[current].data data;

globalContext.currentFreeHandle++;

useVBO(int handle){
globalContext.VBO[handle].data;
t VertexBufferObject{ std::cout << << std

handle;
id* data;

t main(){
someHandle1;
t glContext{ int someHandle2;
VertexBufferObject VBO[100]; int someHandle3;
currentFreeHandle =0; GenerateVertexBufferObject(&someHandle1,)
GenerateVertexBufferObject(&someHandle2,)
GenerateVertexBufferObject(&someHandle3,)i

std::cout << << someHandle3 << std::endl;

'

glContext globalContext;

In this example I'll show *roughly*
how objects work in OpenGL.

struct VertexBufferObject{
int handle;
void* data;

}

struct glContext{

VertexBufferObject VBO[1

int currentFreeHandle =0;
+

glCohtexf globéiCoﬁtext;

C GenerateVertexBufferObjecf(1mL* handle,void* data){

int current = globalContext.currentFreeHandle;
*handle = current;

globaltbntexf.VBOtcurrent];handle currenf;
globalContext.VBO[current].data data;

er

globalContext.currentFreeHandle++;

useVBO(int handle){
globalContext.VBO[handle].data; ething with
std::cout << << std

main(){

int someHandlel;

int someHandle2;

int someHandle3;
GenerateVertexBufferObject(&someHandlel,)i
GenerateVertexBufferObject(&someHandle2,)
GenerateVertexBufferObject(&someHandle3,)i

std::cout << << someHandle3 << std::endl;

'

In OpenGL there is the ‘OpenGL
context’ which is effectively a global
structure keeping track of all state.
o OpenGL itself is a giant state
machine.

struct xBufferOb]ect{
int handle;
Vo] data;

Keeps track of all
struct glContext{

VertexBufferObject VBO[
int currentFreeHandle

te a elobal for
Ite & lobal)

glCoafeXt globalContext;

handle is like a

unique

27 1nt GenerateVertexBufferOb]ect(1nL* handle v01c* data){

int current = globalContext.currentFreeHandle;
*handle = current;

this unique handle to our object
globalContext VBO[current] handle current;
globalContext.VBO[current].data data;

globaiConfext.currentFreeHandle++;

/ Return 0 for success, or some erro

useVBO(int handle){
globalContext.VBO[handle].data;

std::cout << << std:

c main(){

int someHandlel;
int someHandle2;
int someHandle3;
GenerateVertexBufferObject(&someHandlel,
GenerateVertexBufferObject(&someHandle2,
GenerateVertexBufferObject(&someHandle3,

std::cout << << someHandle3 << std:

:éhal;

:endl;

e ObjectGL ‘Objects’ may hold 3D data, pixels,
shaders or other information i B i
®) Based Off thiS name _— observe that We are int Gen%ratéVertexBufferObjecf(mL* handle,vold* data){
Storlng vertex |nf0rmat|0n int curfént }=“glo)ba‘lCoynt've;<t;currentFreeHandle;
o Data is usually stored in ‘flat buffers’ (i.e. , handle: = eGPreat;

1 D-arrays) globalténtexf .VBOthrrentj ;handle ‘ cﬁrrenf;
globalContext.VBO[current].data data;

ent

globalContext.currentFreeHandle++;

useVBO(int handle){
lata (i.e. ; of bytes globalContext.VBO[handle].data; ething with
struct VertexBufferObject{ std::cout << << std
int handle;
void* data;

};

main(){
(e racl a 5t) S int someHandlel;
struct glContext{ int someHandle2;
VertexBufferObject VBO[; Assume V an or ave 1(bje : int someHandle3;
int currentFreeHandle ; Keeps trac next free identifie GenerateVertexBufferObject(&someHandle1,)i
and 1ncrements by 1 every time we GenerateVertexBufferObject(&someHandle2,);
<\ ; GenerateVertexBufferObject(&someHandle3,)i
std::cout << << someHandle3 << std::endl;

'

glCohfexf globéiCoﬁfext;

‘OpenGL Objects’ are identified by a ‘handle’ (i.e. integer) into an array of the
global glContext object.

o The handle corresponds to the index in the array in the OpenGL context
o (Note: OpenGL likely does something more intelligent than using a

hid* data){
free 'id' or

fixed-size array of 100 VertexBufferObject’s -- this is just a demo!)

of OpenGL object with a
of bytes'

a (i1.e. 'array

truct Vertexﬁuﬁ%ﬁ; bject{
int handle;

IVertexBuFferObiect VBO l‘/
int currentFreeHandle =0;

/ and increments by

void* data,

Global OpenGL

/ Keeps track of all 'state' ar

/ Allocate a global for
4 glContext globalContext

//

understand how OpenGL

unique handle and
)

'objects'

Assume we can only have 100 objects
// Keeps track
1 every time we

add a new object.

next free identifier

élobalContext.VBOfcurrentj.data = data;

/ Increment
globalContext.currentFreeHandle++;

; // Return 0 for success, or some er

useVBO(int handle){
globalContext.VBO[handle]. data
std::cout << "

main(){

int someHandlel;

int someHandle2;

int someHandle3;
GenerateVertexBufferObject(&someHandlel,)i
GenerateVertexBufferObject(&someHandle2,) 1
GenerateVertexBufferObject(&someHandle3,)i
std::cout << << someHandle3 << std:

ror code.

"handle'

:endl;

You then ‘use’ the handles in functions
which will access the correct OpenGL
object at an array index that has been
previously allocated

struct VertexBufferObject{
int handle;
void* data;

'VertexBuFferObiect VBO l
int currentFreeHandle =0;

1 };
: Allocate global fo
glContext globalContext;

int GenerateVertexBufferObjec®(1nt* handlefvoid* data){
OpenGL context automatically ftinds a free 'i 0

allocate & :Ji ii}~r'.
int current = globalContext.currentFreeHandle;
*handle = current;
// Assign this unique handle to our object.
globalContext.VBO[current].handle = current;
globalContext.VBO[current].data

ent

globalCéntext.currentFreeHandle++;

i

1ntlusegEgglmt Eang!egl
globalContext. handle].data;

std::cout << << std::endl;

}

int main(){
int someHandlel;
int someHandle2;
int someHandle3;
GenerateVertexBufferObject(&someHandlel,)i
GenerateVertexBufferObject(&someHandle2,)
GenerateVertexBufferObject(&someHandle3,)

'

std::cout << << someHandle3 << std::endl;

'

e Note: Acommon pattern you'll see in OpenGL for
functions of the form ‘Gen’ (short for generate) or
‘Create’ will be to take a pointer to an integer
handle.

o Observe that at line ‘51’ we create an integer
with no assigned value
o Atline ‘54’ we pass in the address of
‘someHandle 1’ into the function.
m Within ‘GenerateVertexBufferObject’ the
value ‘someHandle1’ will then be
assigned through the pointer (line 31)

e You need to actually watch this entire video you do

not understand --

23 // Allocate a global for the context

24 glContext globalContext;

/1 t.
int current = globalContext.currentFreeHandle;
*handle = current;

// Assign this unique handle to our object.
globalContext.VBO[current].handl current;

globalContext.VBO[current].data = data;

’/ Increment
globalContext.currentFreeHandle++;

S a free 'id'

or

"handle'

return 0; // Return 0 for success, or some error code.

useVBO(int handle){
globalContext.VBO[handle].data; //
std::cout << "I ; ething witl

recurn

Mg A

int someHandlel: |
1nt someHandle2;
int someHandle3:
enerateVertexButfterObject(&someHandle
eneratever texputrerupbject(&someHand
GenerateVertexBufferObject(&someHandle3,
std: jcout: s« ™

retcurn

NULL);
eZ, NULL);
ULL);

Do something with data

<< std::endl;

' << someHandle3 << std::endl;

https://www.youtube.com/watch?v=2R5cjpi9Fzw
https://www.youtube.com/watch?v=2R5cjpi9Fzw
https://www.youtube.com/watch?v=2R5cjpi9Fzw

e Passing in a ‘handle’
results in accessing memory from our
allocated buffer in the OpenGL context.

o Note: In most versions of OpenGL, per object
type, we only have ‘1’ object type ‘bound’ at a
given time

m All proceeding operations act on the
currently bound object.

/ Some type of OpenGL object with a unique handle and
3 // some data (i.e. 'array of bytes')
struct VertexBufferObject{
int handle;
void¥* data;

2

// Global OpenGL
| / Keeps track of
16 struct glContext{
d VertexBufferObject VBO[;// Assume we can only have 100 objects
int currentFreeHandle ; } X
/ and increments by 1 every time we
/ add a new o

3T

2 / Allocate a global for the context
24 glContext globalContext;

// handle is like a unique 'id'

GenerateVertexBufferOb]ect(1nt* handle,void* data){
/ OpenGL context autc ically finds a free ' or 'handle'
/ to allocate t

int current globalContext currentFreeHandle;

*handle = current;

’ Assign this unique handle to our object
globalContext.VBO[current].handle = current;
globalContext.VBO[current].data data;

’ Increment
globalContext.currentFreeHandle++;

; // Return 0 for success, or some error code.

useVBO(int handle){
globalContext.VBO[handle]. data // Do something with data
std::cout << "I s << std::endl;

iext free identifier

in(){
int someHand e1i|
. —
int someHandle2;
int someHandle3:
enerateVertexButterObjec someHandle

)53
eneratever texsurrerupjec someHandleZ,) j
GenerateVertexBufferObject(&someHandle3,)i

std::cout << << someHandle3 << std::endl;

curr A
- LL '

Again -- Often OpenGL is managing these buffers
smarter for performance et unique 'id

GenerateVertexBufferOb]ect(1nL* handle, v01d* data){

Yes -- you could write your own map data structure | [t R

to alloca

to map integers to strings if you want more : ki ifabh gl°t.’alc°”te“'C””e”t”ee”a“dlei

= current;
descriptive names. i O It e ondeoR Tanlle B Sir BiGect,
] globalContext.VBO[current].handle current;

globalContext.VBO[current].data data;

1 1 LL‘:- a

/ Increment
increment

globalContext currentFreeHandle++;

/ Return 0 for success, or some

useVBO(int handle){
e data (i.e ay tes 14 globalContext.VBO[handle].data; some
SEFiCE VertexBufferOb]ect{ - std::cout << << std:
int handle; 4
void¥* data;

int in(\){

5 // Keeps tr of all 'state' and 'objects' int someHand e1i|
3 S
struct glContext{ E int someHandle2;

VertexBufferObject VBO[; As sl ye can only e 100 objects 5 int someHandle3;
int currentFreeHandle i / track o ext free identifier 4 enerateVertexBufterObjec someHandle)i
(S Dy 1 < eneratever texsurrerubjec someHandle/Z,)5
GenerateVertexBufferObject(&someHandle3,)i

std::cout << [<< someHandle3 << std::endl;

'

Allocate a global fo

4 glContext globalContext

Handle System

e So what | have shown you -- this idea
with a ‘handle’ to an object is exactly

making use of flyweights.
o OpenGL (and other frameworks) that are
‘state machines’ may also do very well with
this idea of sharing data.

t GenerateVertexB

current = g
*handle = curre

globalContext.V
globalContext.V

globalContext.c

useVBO(int hand
globalContext.V
std::cout <<

t someHandle3

ufferObject(int* handle,void* data){

lobalContext.currentFreeHandle;
Ot

BO[current].handle current;
BO[current].data data;

urrentFreeHandle++;

le){

BO[handle].data;
<< std::endl;

int someHandlel:

t someHandle2

1

enerateVertexButterObject(&someHandle
= 5 y -

evVertexbu

enera
GenerateVertexB

std::cout <<

erubject(&someHandle’Z, :
ufferObject(&someHandle3,)i

<< someHandle3 << std::endl;

Summary

69

Pros and Cons

e Pros
o Can greatly increase the performance of your program
m Both in terms of memory usage being reduced and actual performance of application
(shared data provides potentially good temporal locality)

e Neutral

o Because we are ‘sharing’ resources ‘consistency’ is a byproduct, which may generate a ‘more

correct’ result (i.e. All of our geometry is the same in a 3D mesh)

e Cons

o You loose fine grain control of every single object

o Some additional complexity added

m (e.g. Resource managers/factories and the division of objects into intrinsic and extrinsic
state)

70

More Resources

e htips://gameprogrammingpatterns.com/flyweight.html
e https://www.boost.org/doc/libs/1 84 O/libs/flyweight/doc/tutorial/index.html

71

https://gameprogrammingpatterns.com/flyweight.html
https://www.boost.org/doc/libs/1_84_0/libs/flyweight/doc/tutorial/index.html

Thank you JAYAY 20241

Making your Program Performance Fly!

19:00 - 20:00 CES (1pm ET) Tue. March 19,
2024

60 minutes + 15 minute Q&A After
Introductory Audience

The Flyweight Design Pattern

with Mike Shah

Social: @MichaelShah

Web: mshah.io
Courses: courses.mshah.io
© YouTube

www.vyoutube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

Extras and Notes

